Abstract
We discuss motion control techniques of rotary tables for 5-axis machining centers. Three translational axes and two rotary ones are controlled simultaneously in the machining of complex shapes such as impellers. A tilting rotary table powered by a worm gear is generally used as the rotary axes for 5-axis machining centers, and various causes of inaccuracy exist in the rotary axes. In this study, we clarified three causes of inaccuracy exists in the rotary axis: rotational fluctuation in the worm gear, backlash, and measurement delay of rotary encoder for feedback. Motor torque saturation of the rotary axis also causes a problem when rotational velocity is changed rapidly. Based upon investigated results, we propose compensators for improving synchronous accuracy. We avoid torque saturation in the rotary axis through acceleration-deceleration design. To verify the effectiveness of the proposed compensators, we applied them to an experimental set-up including a rotary axis. As the results of experiments, it is clarified that the proposed compensators improve the synchronous accuracy of translational and rotary axes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.