Abstract

Generalizes the authors' work on high-performance control of induction motors to machines that exhibit significant magnetic saturation. The controller design is based on the standard d-q model of the induction motor which has been modified to account for the saturation of the iron in the main (magnetic) path of the machine. An input-output linearization controller is used to provide independent (decoupled) control of the speed and flux. With this controller, the flux reference becomes an extra degree of freedom for the designer to help achieve performance objectives. Taking into account saturation along with the voltage and current constraints, the flux reference is chosen to achieve the optimal torque (maximum for acceleration and minimum for deceleration) at any given speed. Experimental results are given to demonstrate the input-output controller's effectiveness in providing the tracking of a given position and speed trajectory while simultaneously tracking the optimal flux reference. The set of experiments are fast point-to-point motion control moves with an inertial load comparing the input-output controller based on the saturated magnetics model with that based on the linear magnetics model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.