Abstract

This paper presents a high-performance integrated monolithic ceramic dielectric waveguide (DW) filter featuring isosceles right-angled triangular (IRAT) resonators. The fabrication process of the filter involves embedding a specific number of blind holes (BHs) or through holes/slots (THs/TSs) in a hexagonal ceramic dielectric block, fully metallizing the dielectric surface, and forming a monolithic ceramic DW filter. To achieve magnetic coupling, four THs and a BH are introduced in the oblique edges of two IRAT resonators; alternatively, a TS and BH are introduced in their right-angled edges. Electrical coupling is realized through a deep BH on the right-angle side of the resonators. Two non-adjacent resonators initiate weak cross-coupling by cascading a T-shaped rectangular TS, shallow BHs, and deep BH, creating two transmission zeros (TZs) outside the band. The filter was fabricated to ensure theoretical correctness and process reliability. The measured results show an insertion loss between 0.5 – 1 dB and a return loss greater than 18 dB at a bandwidth of 3.4 – 3.6 GHz. Two steep out-of-band TZs occur at 3.26 GHz and 3.72 GHz, aligning with simulation results. Therefore, the filter not only exhibits excellent performance but is also convenient for mass production and manufacturing, offering significant potential for future applications in 5G / 6G communication base stations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.