Abstract

Several millimeter-wave passive components have been fabricated using the microshield transmission line geometry, and their performance is presented herein. Microshield is a quasi-planar, half-shielded design which uses a thin dielectric membrane (1.5 /spl mu/m) to support the conducting lines. This approach provides a nearly homogeneous, air-filled environment and thus allows extremely broad-band TEM operation. This paper examines the conductor loss and effective dielectric constant of microshield lines and presents results on transitions to conventional coplanar waveguide, right-angle bends, different stub configurations, and lowpass and bandpass filters. Experimental data is provided along with numerical results derived from an integral equation method. The microshield line is shown to be very suitable for high performance millimeter and submillimeter-wave applications.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call