Abstract

A micromachined AlGaN/GaN high-electron-mobility transistor (HEMT) on a Si substrate with diamondlike carbon/titanium (DLC/Ti) heat-dissipation layers was investigated. Superior thermal conductivity and thermal expansion coefficient similar to that of GaN enabled DLC/Ti to efficiently dissipate the heat of the GaN power HEMT through the Si substrate via holes. This HEMT with DLC design also maintained a stable current density at bending conditions (strain: 0.01%). Infrared thermographic imaging showed that the thermal resistance of standard multi-finger power HEMT layer was 13.6 K/W and it improved to 5.3 K/W because of the micromachining process with a backside DLC/Ti composite layer. Thus, the proposed DLC/Ti heat-dissipation layer realized efficient thermal management in GaN power HEMTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.