Abstract

Mg3Sb2-based thermoelectrics show great promise for next-generation thermoelectric power generators and coolers owing to their excellent figure of merit (zT) and earth-abundant composition elements. However, the complexity of the defect microstructure hinders the advancement of high performance. Here, the defect microstructure is modified via In doping and prolonged sintering time to realize the reduced structural disorder and microstructural evolution, synergistically optimizing electron and phonon transport via a delocalization effect. As a result, an excellent carrier mobility of ~174 cm2 V−1 s−1 and an ultralow κlat\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\kappa}_{{lat}}$$\\end{document} of ~0.42 W m−1 K−1 are realized in this system, leading to an ultrahigh zT of ~2.0 at 723 K. The corresponding single-leg module demonstrates a high conversion efficiency of ~12.6% with a 425 K temperature difference, and the two-pair module of Mg3Sb2/MgAgSb displays ~7.1% conversion efficiency with a 276 K temperature difference. This work paves a pathway to improve the thermoelectric performance of Mg3Sb2-based materials, and represents a significant step forward for the practical application of Mg3Sb2-based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.