Abstract
Advancing neuromorphic computing technology requires the development of versatile synaptic devices. In this study, we fabricated a high-performance Al/LiNbO3/Pt memristive synapse and emulated various synaptic functions using its primary key operating mechanism, known as oxygen vacancy-mediated valence charge migration (VO-VCM). The voltage-controlled VO-VCM induced space-charge-limited conduction and self-rectifying asymmetric hysteresis behaviors. Moreover, the device exhibited voltage pulse-tunable multi-state memory characteristics because the degree of VO-VCM was dependent on the applied pulse parameters (e.g., polarity, amplitude, width, and interval). As a result, synaptic functions such as short-term memory, dynamic range-tunable long-term memory, and spike time-dependent synaptic plasticity were successfully demonstrated by modulating those pulse parameters. Additionally, simulation studies on hand-written image pattern recognition confirmed that the present device performed with high accuracy, reaching up to 95.2%. The findings suggest that the VO-VCM-based Al/LiNbO3/Pt memristive synapse holds significant promise as a brain-inspired neuromorphic device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.