Abstract

3D printing has emerged as an enabling technology for miniaturization. High-precision printing techniques such as stereolithography are capable of printing microreactors and lab-on-a-chip devices for efficient parallelization of biological and biochemical reactions under reduced uptake of reactants. In the world of chemistry, however, up until now, miniaturization has played a minor role. The chemical and thermal stability of regular 3D printing resins is insufficient for sustaining the harsh conditions of chemical reactions. Novel material formulations that produce highly stable 3D-printed chips are highly sought for bringing chemistry up-to-date on the development of miniaturization. In this work, a brief review of recent developments in highly stable materials for 3D printing is given. This work focuses on three highly stable 3D-printable material systems: transparent silicate glasses, ceramics, and fluorinated polymers. It is further demonstrated that 3D printing is also a versatile technique for surface structuring of polymers to enhance their wetting performance. Such micro/nanostructuring is key to selectively wetting surface patterns that are versatile for chemical arrays and droplet synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call