Abstract

A highly efficient cathode catalyst for rechargeable Li-CO2 batteries is successfully synthesized by implanting single iron atoms into 3D porous carbon architectures, consisting of interconnected N,S-codoped holey graphene (HG) sheets. The unique porous 3D hierarchical architecture of the catalyst with a large surface area and sufficient space within the interconnected HG framework can not only facilitate electron transport and CO2 /Li+ diffusion, but also allow for a high uptake of Li2 CO3 to ensure a high capacity. Consequently, the resultant rechargeable Li-CO2 batteries exhibit a low potential gap of ≈1.17 V at 100 mA g-1 and can be repeatedly charged and discharged for over 200 cycles with a cut-off capacity of 1000 mAh g-1 at a high current density of 1 A g-1 . Density functional theory calculations are performed and the observed appealing catalytic performance is correlated with the hierarchical structure of the carbon catalyst. This work provides an effective approach to the development of highly efficient cathode catalysts for metal-CO2 batteries and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.