Abstract
The future development of low-cost, high-performance electric vehicles depends on the success of next-generation lithium-ion batteries with higher energy density. The lithium metal negative electrode is key to applying these new battery technologies. However, the problems of lithium dendrite growth and low Coulombic efficiency have proven to be difficult challenges to overcome. Fundamentally, these two issues stem from the instability of the solid electrolyte interphase (SEI) layer, which is easily damaged by the large volumetric changes during battery cycling. In this work, we show that when a highly viscoelastic polymer was applied to the lithium metal electrode, the morphology of the lithium deposition became significantly more uniform. At a high current density of 5 mA/cm2 we obtained a flat and dense lithium metal layer, and we observed stable cycling Coulombic efficiency of ∼97% maintained for more than 180 cycles at a current density of 1 mA/cm2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.