Abstract

Breast cancer is one of the most prevalent cancers worldwide usually treated with Tamoxifen. Tamoxifen resistance development is the most challenging issue in an initially responsive breast tumor, and mechanisms of resistance are still under investigation. The objective of this study is to develop and validate a selective, sensitive, and simultaneous high performance liquid chromatography–tandem mass spectrometry method to explore the changes in substrates and metabolites in supernatant media of developed Tamoxifen resistance MCF-7 cells. We focus on the determination of lactate, pyruvate, and L-glutamine which enables the tracking of changes in metabolic pathways as a result of the resistance process. Chromatographic separation was achieved within 3.5 min. using a HILIC column (4.6 × 100 mm, 3.5 µm particle size) and mobile phase of 0.05 M acetic acid–ammonium acetate buffer solution pH 3.0: Acetonitrile (40:60 v/v). The linear range was 0.11–2.25, 0.012–0.227, and 0.02–0.20 mM for lactate, pyruvate, and L-glutamine, respectively. Within- and between-run accuracy was in the range 98.94-105.50% with precision (CV, %) of ≤0.86%. The results revealed a significant increase in both lactate and pyruvate production after acquiring the resistant. An increase in L-glutamine levels was also observed and could be attributed to its over production or decline in its consumption. Therefore, further tracking of genes responsible of lactate, pyruvate, and glutamine metabolic pathways should be performed in parallel to provide in-depth explanation of resistance mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.