Abstract

Bisphenol A diglycidyl ether (BADGE) is used as a raw material for the production of epoxy resins and PVC organosols, which are commonly applied as inner coatings for food cans. BADGE and its derivatives can migrate from coatings to foodstuffs during processing and storage thereby creating adverse health issues. In this work, a method based on high-performance liquid chromatography (HPLC)-fluorescence detection (FLD) method was developed for the rapid determination of BADGE and its five derivatives in canned foods. Modeling software DryLab® was applied for the optimization of separation conditions. An adequate separation was achieved in 5 min including equilibration time, using a core–shell particle column; such application has not been reported so far. Also, the results showed that LOD varied from 0.01 to 0.20 ng/g, while LOQ varied from 0.03 to 0.66 ng/g, and RSD was found to be <8.64%. The analytical recoveries ranged from 70.46 to 103.44%. Excellent validation data revealed that this method is suitable for the investigation of can coating-to-food migration of BADGE and its derivatives. The HPLC-FLD method is rapid, inexpensive and highly efficient, which could be applicable for safety inspection of food contact materials involving BADGE and its derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.