Abstract

Liposomes are spherical, closed vesicles consisting of at least one lipid bilayer with a water chamber and are widely used to encapsulate bioactive molecules. Lipid membranes, composed of different types of lipids or lipophilic components, determine whether liposomes can achieve the desired purpose and determine the overall quality of liposomes. Thus, the quantification of lipid components and encapsulated molecules is essential to characterize and control the quality of liposomes. Moreover, multicomponent simultaneous determination is the preferred method for lipid component analysis in liposomes. Therefore, the present work describes an analytical methodology for the simultaneous determination of commonly used lipids in liposome formulations, using h igh-performance liquid chromatography coupled with a tandem mass spectrometry (MS) detector (HPLC-MS/MS). HPLC-MS/MS consists of a rapid and highly efficient chromatographic separation of the liposomal components with a C18 column and the subsequent detection of the ingredients through an MS detector, along with an accurate mass fragmentation pattern. The analytical process mainly includes lipid extraction, solution preparation, the optimization of chromatographic conditions, and method validation. We hope this analytical methodology is valuable and efficient and can be applied to the analysis of multiple types of lipids in liposomes, such as raw material quality analysis, formulation study, overall quality control, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call