Abstract
In this study, we developed an on-line reverse-phase high-performance liquid chromatography-electrospray ionization-mass spectrometry (RP-HPLC-ESI-MS) separation and structural characterization of hyaluronan (HA)/chondroitin sulfate (CS)/dermatan sulfate (DS) disaccharides released by enzymatic treatment and derivatized with 2-aminoacridone (AMAC), providing a high-resolution system also applicable by using a further fluorimetric detector (Fp) before ESI-MS spectral acquisition. Isomeric nonsulfated HA and CS/DS disaccharides, isomeric monosulfated and isomeric disulfated CS/DS disaccharides, and the trisulfated species were distinctly separated and unambiguously identified by their retention times and mass spectra in negative ionization mode. In general, no multiply charged ions were detected even for highly charged disaccharides, but the presence of desulfonated products for highly sulfated species due to the relative instability of sulfo groups was observed. RP-HPLC-ESI-MS of each AMAC disaccharide was found to be linear from 3 to 500 ng with very high coefficient of correlation values due to the high efficiency of separation and the sharp outline of the peaks. Various CS/DS samples were characterized for disaccharide composition, and minor oligomer species identified as GalNAcSO(4) at the nonreducing end of chains was observed as a common component of these macromolecules. Furthermore, purified endogenous normal human plasma CS disaccharides were also evaluated by means of RP-HPLC-(Fp)-ESI-MS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.