Abstract

Laser speckle contrast imaging (LSCI) is a noninvasive, label-free technique that allows real-time investigation of the microcirculation situation of biological tissue. High-quality microvascular segmentation is critical for analyzing and evaluating vascular morphology and blood flow dynamics. However, achieving high-quality vessel segmentation has always been a challenge due to the cost and complexity of label data acquisition and the irregular vascular morphology. In addition, supervised learning methods heavily rely on high-quality labels for accurate segmentation results, which often necessitate extensive labeling efforts. Here, we propose a novel approach LSWDP for high-performance real-time vessel segmentation that utilizes low-quality pseudo-labels for nonmatched training without relying on a substantial number of intricate labels and image pairing. Furthermore, we demonstrate that our method is more robust and effective in mitigating performance degradation than traditional segmentation approaches on diverse style data sets, even when confronted with unfamiliar data. Importantly, the dice similarity coefficient exceeded 85% in a rat experiment. Our study has the potential to efficiently segment and evaluate blood vessels in both normal and disease situations. This would greatly benefit future research in life and medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.