Abstract

Lattice-matched 0.52 eV InGaAsSb/GaSb thermophotovoltaic (TPV) cells are grown using a multi-wafer metal-organic-chemical-vapor-deposition (MOCVD) system. MOCVD growth series of P/N junction epitaxial structures consisting of as many as 30 wafers demonstrate good run-to-run reproducibility, good uniformity across the wafer and exhibit high performance with open circuit voltages of {approx}300mV and fill factors of 70% at 25 C. Growth parameters, including temperature, surface preparation and substrate orientation, that directly affect growth have been optimized for the active 0.52 eV InGaAsSb region and GaSb confinement layers. Focus is on increasing TPV diode performance through architectural improvements, specifically by reducing the minority carrier recombination velocity at the emitter and base front and back interfaces. Work in support of incorporating a back surface reflector (BSR) including the growth of N/P diode architectures and the addition of a lattice-matched InAsSb etch stop layer for substrate removal and wafer bonding, is reported. The lattice matched InAsSb stop etch exhibits resiliency to the substrate removal and wafer bonding processes. Substantial improvement in carrier lifetime on test structures with P-type AlGaAsSb layers indicated incorporation of these layers into the TPV cell structure should provide significant improvement in open-circuit voltage. Addition of AlGaAsSb confinement layers to the standard P/N cell structure gave some of the best InGaAsSb TPV cell results to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.