Abstract

Infrared thermal radiation suppression techniques are vital to the survival of various vehicles/targets, and low-emissivity materials are conventionally employed to reduce infrared radiant power of targets. However, infrared radiant power depends not only on infrared emittance but also heavily on the temperature according to Steven-Boltzmann law (P=εσT4). In this work, it is for the first time, a novel type of infrared stealth material based on tailoring radiative properties in an ultra-broadband ranging from 0.4 µm to 14 µm is proposed. A low emittance in atmosphere window (3–5 µm, 8–14 µm) is achieved to suppress infrared radiation, and a high emittance from 5 to 8 µm is obtained to reduce temperature via radiative cooling from metamaterial surface to the atmosphere. Meanwhile, low absorptance in the solar spectra (0.4–2.5 µm) can help to resist the solar heat. As a result, the infrared radiant power in the atmospheric window is prominently reduced benefiting from low emittance and decreased temperature. This work helps guide the design of more effective infrared stealth materials and paves the way for the applications of metamaterials in infrared stealth applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.