Abstract

The most popular second-order statistical texture features are derived from the co-occurrence matrix, which has been proposed by Haralick. However, the computation of both matrix and extracting texture features are very time consuming. In order to improve the performance of co-occurrence matrices and texture feature extraction algorithms, we propose an architecture on FPGA platform. In the proposed architecture, first, the co-occurrence matrix is computed then all thirteen texture features are calculated in parallel using computed co-occurrence matrix. We have implemented the proposed architecture on Virtex 5 fx130T-3 FPGA device. Our experimental results show that a speedup of 421[× yields over a software implementation on Intel Core i7 2.0 GHz processor. In order to improve much more performance on textures, we have reduced the computation of 13 texture features to 3 texture features using ranking of Haralick's features. The performance improvement is 484×.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.