Abstract

EEG analysis aims to help scientists better understand the brain, help physicians diagnose and treatment choices of the brain-computer interface. Artificial neural networks are among the most effective learning algorithms to perform computing tasks similar to biological neurons in the human brain. In some problems, the neural network model's performance might significantly degrade and overfit due to some irrelevant features that negatively influence the model performance. Swarm optimization algorithms are robust techniques that can be implemented to find optimal solutions to such problems. In this paper, Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithms are applied for the feature selection and the training of a Feed-forward Neural Network (FFNN). The performance of the FFNN in terms of test accuracy, precision, recall, and F1_score is investigated. Furthermore, this research has implemented other five machine learning algorithms for the purpose of comparison. Experimental results prove that the neural network model outperforms all other algorithms via GWO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call