Abstract

Piezoelectric ceramics with combinatory soft and hard characteristics are highly desired for high-power applications. However, it remains grand challenge to achieve simultaneous presence of hard (e.g. high coercive field, Ec; high mechanical quality factor, Qm) and soft (e.g. high piezoelectric constant, d; high electromechanical coupling factor, k) piezoelectric properties in piezoelectric ceramics since the mechanism controlling the hard behavior (pinned domain walls) will significantly reduce the soft behavior. Here, we address this grand challenge and demonstrate <001> textured MnO2 and CuO co-doped Pb(In1/2Nb1/2)O3- Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) ceramics exhibiting ultrahigh combined soft and hard piezoelectric properties (d33 = 713 pC N−1, k31 = 0.52, Qm≈950, Ec = 9.6 kV cm−1, tan δ = 0.45%). The outstanding electromechanical properties are explained by considering composition/phase selection, crystallographic anisotropy and defect engineering. Phase-field model in conjunction with high resolution electron microscopy and diffraction techniques is utilized to delineate the contributions arising from intrinsic piezoelectric response, domain dynamics, and local structural heterogeneity. These results will have significant impact in the development of high-power transducers and actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.