Abstract

Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique that can achieve both high-resolution and a wide field-of-view via a sequence of low-resolution images. FPM is a complex iterative process, and it is difficult to meet the needs of rapid reconstruction imaging with the conventional FPM deployed on general purpose processors. In this paper, we propose a high-performance heterogeneous field-programmable gate array (FPGA) architecture based on the principle of full pipeline and the data-flow structure for the iterative reconstruction procedure of FPM. By optimizing the architecture network at gate-level logic circuits, the running time of the FPGA-based FPM reconstruction procedure is nearly 20 times faster than conventional methods. Our proposed architecture can be used to develop FPM imaging equipment that meets resource and performance requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call