Abstract

Graphene has been considered as an excellent channel material for constructing magnetic sensors or Hall elements with high sensitivity and linearity. Compared to intensively reported graphene Hall elements (GHEs) fabricated on monolayer graphene, the exploration on bilayer graphene-based Hall elements is very rare. Here, we first investigate the performance and potential of Hall elements built on chemical vapor deposition-grown bilayer graphene. Without applying any gate voltage, the bilayer GHEs exhibit a typical voltage sensitivity of 119 mV/VT and current sensitivity of 397 V/AT, which are higher than those in the monolayer GHEs, indicating the better performance in practical applications. Moreover, the bilayer GHEs present obviously lower noise and then the minimum detection magnetic field compared to the monolayer ones. Hall elements built on bilayer graphene show certain unique advantages and can be used as an important supplement to mainstreaming monolayer GHEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.