Abstract

Orthogonal, sequential “click” reactions were implemented to yield novel polymeric substrates with the ability to record holographic data. The base-catalyzed thiol–acrylate Michael “click” reaction was implemented to yield a writable, stage 1 polymeric substrate with glass transition temperatures (Tg) ranging from 0 to −26 °C and rubbery storage moduli (E′) from 11.1 to 0.3 MPa. The loosely cross-linked matrix also contained a novel high refractive index monomer 9-(2,3-bis(allyloxy)propyl)-9H-carbazole (BAPC) that did not participate in the thiol–Michael reaction but allowed for large index gradients to be developed within the network upon subsequent exposure to coherent laser beams and initiation of the radical-mediated thiol–ene reaction. The holographic gratings were recorded with 96% diffraction efficiency and ca. 2.4 cm/mJ of light sensitivity in 2 s under a 405 nm exposure with an intensity of 20 mW/cm2. Subsequent to pattern formation, via a thiol–allyl radical “click” photopolymerization initiated...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.