Abstract

Abstract Proximity queries such as closest point computation and collision detection have many applications in computer graphics, including computer animation, physics‐based modelling, augmented and virtual reality. We present efficient algorithms for proximity queries between a closed rigid object and an arbitrary, possibly deformable, polygonal mesh. Using graphics hardware to densely sample the distance field of the rigid object over the arbitrary mesh, we compute minimal proximity and collision response information on the graphics processing unit (GPU) using blending and depth buffering, as well as parallel reduction techniques, thus minimizing the readback bottleneck. Although limited to image‐space resolution, our algorithm provides high and steady performance when compared with other similar algorithms. Proximity queries between arbitrary meshes with hundreds of thousands of triangles and detailed distance fields of rigid objects are computed in a few milliseconds at high‐sampling resolution, even in situations with large overlap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.