Abstract

Photodetectors (PDs) based on two-dimensional (2D) materials have promising applications in modern electronics and optoelectronics. However, due to the intralayer recombination of the photogenerated carriers and the inevitable surface trapping stages of the constituent layers, the PDs based on 2D materials usually suffer from low responsivity and poor response speed. In this work, a distinguished GaN-based photodetector is constructed on a sapphire substrate with Te/metal electrodes. Due to the metal-like properties of tellurium, the band bending at the interface between Te and GaN generates an inherent electric field, which greatly reduces the carrier transport barrier and promotes the photoresponse of GaN. This Te-enhanced GaN-based PD show a promising responsivity of 4951 mA/W, detectivity of 1.79 × 1014 Jones, and an external quantum efficiency of 169%. In addition, owing to the collection efficiency of carriers by this Te-GaN interface, the response time is greatly decreased compared with pure GaN PDs. This high performance can be attributed to the fact that Te reduces the contact resistance of the metal electrode Au/Ti to GaN, forming an ohmic-like contact and promoting the photoresponse of GaN. This work greatly extends the application potential of GaN in the field of high-performance photodetectors and puts forward a new way of developing high performance photodetectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.