Abstract

Quantum-dot cellular automata (QCA) is a new and promising computation paradigm, which can be a viable replacement for the complementary metal–oxide–semiconductor technology at nano-scale level. This technology provides a possible solution for improving the computation in various computational applications. Two QCA full adder architectures are presented and evaluated: a new and efficient 1-bit QCA full adder architecture and a 4-bit QCA ripple carry adder (RCA) architecture. The proposed architectures are simulated using QCADesigner tool version 2.0.1. These architectures are implemented with the coplanar crossover approach. The simulation results show that the proposed 1-bit QCA full adder and 4-bit QCA RCA architectures utilise 33 and 175 QCA cells, respectively. Our simulation results show that the proposed architectures outperform most results so far in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call