Abstract

A high-performance dye-sensitized photocatalytic H2 evolution system was developed based on Förster resonance energy transfer (FRET) by employing water-soluble and highly photoluminescent N,S codoped graphene quantum dots (NSGQDs) as the homogeneous energy donor, erythrosin B (ErB) as the sensentizing dye, and platinum nanoparticles (Pt NPs) as the catalyst. NSGQDs absorbed high-energy photons that undergo FRET to transfer the excitation energy to the sensitizing ErB for maximizing light absorption and also served as an electron transfer and loading matrix of Pt NPs for accelarating the electron transfer; as a result, the ErB-sensitized NSGQD-Pt system afforded much higher H2 evolution activity than the NSGQD-free dye-sensitized system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call