Abstract

Rechargeable aqueous zinc-ion batteries (ZIBs) featured with environmental friendliness, low cost, and high safety have attracted great interest but still suffer from the lack of high-performance electrodes. Herein, a facile in situ approach is developed to simultaneously introduce multivalence, increase the interlayer water content, and expand the interlayer distance in hydrated V2O5. These structural modulations endow the as-obtained layer-expanded V2O5 2.2H2O (E-VO) nanosheets with faster charge transfer kinetics, more Zn2+ storage space, and higher structural stability than precursor V2O5. Besides, a unique flexible Zn/stainless steel (Zn/SS) mesh composite anode with low polarization and uniform Zn stripping/plating behavior is fabricated, which alleviates the Zn dendrite growth. As cathode for aqueous ZIBs, E-VO exhibits high reversible capacity (450 mAh g−1 at 0.1 A g−1), good rate capability (222 mAh g−1 at 10 A g−1) and long stability (72% capacity retention for 3000 cycles at 5 A g−1). Moreover, the flexibility and large lateral size make E-VO a high-performance binder-free cathode for flexible quasi-solid-state Zn/E-VO battery, i.e. high capacity under different bending states (361 mAh g−1 at 0.1 A g−1), good rate capability (115 mAh g−1 at 2 A g−1), and long stability (85% capacity retention for 300 cycles at 1 A g−1). The achievements of this study can be considered as an important step toward the development of aqueous-based ZIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.