Abstract
Organic-inorganic hybrid silica materials, incorporating an organic group bridging two silicon atoms, have demonstrated great potential in creating membranes with excellent permselectivity. Yet, the large-scale production of polymer-supported flexible hybrid silica membranes has remained a significant challenge. In this study, we present an easy and scalable approach for fabricating these membranes. By employing a sol-gel ultrasonic spray process with a single-pass method, we deposited a thin and uniform hybrid active layer onto a porous polymer substrate. We first optimized the deposition conditions, including substrate temperature, the binary solvent ratio of the silica sol, and various ultrasonic spray parameters. The resulting flexible hybrid silica membranes exhibited exceptional dehydration performance for isopropanol (IPA)/water solutions (IPA: 90 wt%) in the pervaporation process, achieving a water flux of 0.6 kg/(m2 h) and a separation factor of around 1300. This work demonstrates that the single-pass ultrasonic spray method is an effective strategy for the large-scale production of polymer-supported flexible hybrid silica membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.