Abstract
Flat-type InGaN-based light-emitting diodes (LEDs) without an n-type contact electrode were developed by using a local breakdown conductive channel (LBCC), and the effect of the In content of the InGaN quantum wells (QWs) on the local breakdown phenomenon was investigated. Electroluminescence and X-ray analyses demonstrated that the homogeneity and crystallinity of the InGaN QWs deteriorated as the In content of the InGaN QWs increased, thereby increasing the reverse leakage current and decreasing the breakdown voltage. After reverse breakdown with a reverse current of several mA, an LBCC was formed on the GaN-based LEDs. The surface size and anisotropic shape of the LBCC increased as the indium content of the InGaN QWs in the LEDs increased. Moreover, a flat-type InGaN LED without an n-type electrode was developed by using the LBCC. Notably, the resistance of the LBCC decreased with increasing indium content in the InGaN QWs, leading to lower resistance and higher light emission of the flat-type InGaN-based LEDs without an n-type contact electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Scientific Reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.