Abstract

We have created a field emitter composed of a carbon nanotube (CNT) yarn, which was prepared by direct spinning through chemical vapor deposition and then formed into a carpet structure by tying the yarn to a conductive substrate before cutting it. The structure of the carpet is arranged to induce the tips of the CNT yarn to protrude toward the anode for maximum electron emission. The turn-on field, threshold field, and field enhancement factor of the device are 0.33, 0.48V/μm, and 19,141, respectively. Extremely low operating electric fields and a high field enhancement factor result from the high density of CNT emitters with high crystallinity, the electrically good contact between the emitters and the substrate, and the effects of the multistage structure. The emission is stable even at a high current density of 2.13mA/cm2, attributed to the strong adhesion between the emitters and the substrate. The emission performance is found to be customizable by adjusting the structure, for example, the CNT pile density. These results are relevant for practical applications, such as large-area flat-panel displays, large-area low-voltage lamps, and X-ray sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call