Abstract

Planar 2D materials are possibly the ideal channel candidates for future field effect transistors (FETs), due to their unique electronic properties. However, the performance of FETs based on 2D materials is yet to exceed those of conventional silicon based devices. Here, a 2D channel thin film made from liquid phase exfoliated molybdenum oxide nanoflake inks with highly controllable substoichiometric levels is presented. The ability to induce oxygen vacancies by solar light irradiation in an aqueous environment allows the tuning of electronic properties in 2D substoichiometric molybdenum oxides (MoO3−x). The highest mobility is found to be ≈600 cm2 V−1 s−1 with an estimated free electron concentration of ≈1.6 × 1021 cm−3 and an optimal IOn/IOff ratio of >105 for the FETs made of 2D flakes irradiated for 30 min (x = 0.042). These values are significant and represent a real opportunity to realize the next generation of tunable electronic devices using electronic inks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call