Abstract

Semiconducting two-dimensional transition metal chalcogenide crystals have been regarded as the promising candidate for the future generation of transistor in modern electronics. However, how to fabricate those crystals into practical devices with acceptable performance still remains as a challenge. Employing tungsten disulfide multilayer thin crystals, we demonstrate that using gold as the only contact metal and choosing appropriate thickness of the crystal, high performance transistor with on/off ratio of 10(8) and mobility up to 234 cm(2) V(-1) s(-1) at room temperature can be realized in a simple device structure. Furthermore, low temperature study revealed that the high performance of our device is caused by the minimized Schottky barrier at the contact and the existence of a shallow impurity level around 80 meV right below the conduction band edge. From the analysis on temperature dependence of field-effect mobility, we conclude that strongly suppressed phonon scattering and relatively low charge impurity density are the key factors leading to the high mobility of our tungsten disulfide devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.