Abstract

At present, it is difficult for electrocatalytic electrode materials with high-Performance to be prepared at low cost and large area under mild conditions. Therefore, we adopt a facile electroless plating method to deposit the FeCoP alloys on the nickel foam (NF) with different areas of 1 cm2, 4 cm2, 8 cm2 and 16 cm2. The FeCoP/NF catalysts exhibit extraordinary catalytic activity for the oxygen evolution reaction (OER) in alkaline media and are comparable to the state-of-the-art IrO2 in 1.0 M KOH, capable of yielding a current density of 10 mA cm−2 at an overpotential of only 250 mV. Furthermore, the FeCoP/NF catalysts show efficient activity towards the hydrogen evolution reaction (HER) with an overpotential of 163 mV at j = 10 mA cm−2 as well. Remarkably, when used as both the anode and cathode, a low potential of 1.68 V (vs. RHE) is required to reach the current density of j = 10 mA cm−2, making the FeCoP/NF alloys as an active bifunctional electrocatalyst for overall water splitting. The FeCoP/NF alloy catalysts with high catalytic activity, facile preparation and low cost would provide a new pathway for the design and large-scale application of high-performance bifunctional catalysts for electrochemical water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.