Abstract
Supersonic molecular beam injection (SMBI) was first proposed and demonstrated on the HL-1 tokamak and was successfully developed and used on HL-1M. Recently, new results of SMBI experiments were obtained by increasing the gas pressure from 0.5 to over 1.0 MPa. A stair-shaped density increment was obtained with high-pressure multi-pulse SMBI that was similar to the density evolution behaviour during multi-pellet injection. This demonstrated the effectiveness of SMBI as a promising fuelling tool for steady-state operation. The penetration depth and injection speed of the high-pressure SMBI were roughly measured from the contour plot of the Hα emission intensity. It was shown that injected particles could penetrate into the core region of the plasma. The penetration speed of high-pressure SMBI particles in the plasma was estimated to be about 1200 m s−1. In addition, clusters within the beam may play an important role in the deeper injection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.