Abstract

AbstractSilicon nitride (SiN) emerges as an important platform for ultralow loss photonic integrations with complementary metal‐oxide‐semiconductor compatibility. However, active devices, such as modulators, are difficult to realize on pure SiN due to the lack of any electro‐optic (EO) properties of the material. Here, an SiN and lithium niobate (LN) heterogenous integration platform supporting high‐performance EO modulators on SiN waveguide circuits is introduced. An efficient evanescent coupling structure is realized for low‐loss light transitions between the SiN waveguide and the LN ridge waveguide with a measured mode transition loss of only 0.4 dB. Based on this heterogeneous platform, an EO Mach–Zender interference modulator on SiN is built with unprecedented loss, efficiency, and bandwidth performances. A half‐wave voltage of 4.3 V with a modulation bandwidth of 37 GHz and an overall insertion loss of 1 dB is measured for a 7‐mm long device. Data transmission up to 128 Gb s−1 with a bit‐error‐rate of <2.4 × 10‐4 is also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.