Abstract

Mass-produced multi-walled carbon nanotubes (MWNTs, which have the trademark VGNF®) have been investigated for their potential for use in electric double-layer capacitors (EDLCs). The variation aspects of these MWNTs by KOH activation showed quite interesting features. The gravimetric capacitance enhancement and specific surface area on KOH activation increased linearly. However, the capacitance per unit surface area has a maximum at 200 wt. % of KOH addition. The VGNF-KOH 500 sample exhibits a capacitance enhancement as much as 13 times greater (28.3 F/g) than that of the as-grown materials (2.2 F/g), under the conditions of charging up to 3.5 V and discharging at a current density of 10 mA/cm2. Interestingly, for this MWNT (VGNF®), selective attack on its amorphous carbon impurity has also been observed, as demonstrated from both scanning electron microscopy observations and Raman spectra. Consequently, the results of this study will provide insight into the potentiality of using MWNTs for EDLC electrodes, which would enable the cheapest production cost among the various types of carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.