Abstract
Surface plasmon resonance using noble metal nanoparticles is regarded as an attractive and viable strategy to improve the optical absorption and/or photocurrent in dye-sensitized solar cells (DSSCs). However, no significant improvement in device performance has been observed. The bottleneck is the stability of the noble-metal nanoparticles caused by chemical corrosion. Here, we propose a simple method to synthesize high-performance DSSCs based on polyvinylpyrrolidone-coated Au-TiO2 microspheres that utilize the merits of TiO2 microspheres and promote the coupling of surface plasmons with visible light. When 0.4 wt % Au nanoparticles were embedded into the TiO2 microspheres, the device achieved a power conversion efficiency (PCE) as high as 10.49%, a 7.9% increase compared with pure TiO2 microsphere-based devices. Simulation results theoretically confirmed that the improvement of the PCE is caused by the enhancement of the absorption cross-section of dye molecules and photocurrent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.