Abstract

We use the leaky electronic state in the continuum concept to create a photovoltaic and photoconductive dual-mode operation superlattice infrared photodetector working at a temperature as high as room temperature. An asymmetric superlattice InGaAs/InAlAs is designed to virtually increase the material band offset and to create a localized state in the continuum with a preferential direction for electron extraction. These two characteristics are responsible for low dark current and high operating temperature of the device. At λp=4.1μm response peak, the highest specific detectivity is 5.7×1010 Jones for +5.0V at 80 K, and at room temperature, it is 1.3×105 Jones for null bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.