Abstract

Abstract Individual-oriented simulation allows us to represent the global behavior of a system through local interaction in discrete time steps. As we face up close-to-reality models and large-scale workloads, we focus on turning from traditional approaches towards distributed simulation in order to obtain more accurate results in less time. One of the main problems in distributed simulation is how to distribute individuals efficiently through distributed architecture. Individual-oriented systems can be implemented in a distributed fashion by using either a grid-based or cluster-based approach. On one hand, grid-based approaches consist of assigning to each node a simulation space portion, together with the set of individuals currently residing in that area. On the other hand, cluster-based approaches consist of assigning to each node a fixed set of individuals. In this work we present a cluster-based method based on Voronoi diagrams and covering radius criterion in order to avoid unnecessary interaction between individuals. We can show experimentally that our proposal reduces the communication and computing times significantly increasing simulation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.