Abstract

A new current control scheme for selective harmonic compensation is proposed for shunt active power filters. The method employs an array of resonant current controllers, one for the fundamental, and one for each harmonic, implemented in fundamental reference frame in order to reduce the overall computational effort. The proposed controller design is based on the pole-zero cancellation technique, taking into account the load transfer function at each harmonic frequency. Two design methods are provided, which give controller transfer functions with superior frequency response. The complete current controller is realized as the superposition of all individual harmonic controllers. The frequency response of the entire closed loop control is optimal with respect to filtering objectives, i.e., the system provides good overall stability and excellent selectivity for interesting harmonics. This conclusion is supported by experimental results on a 7.6-kVA laboratory filter, indicating a reduction in current THD factor from 34% to 2%, while the highest harmonic compensated is the 37th harmonic current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.