Abstract
AbstractUltralow‐k materials with promising comprehensive performance to meet the increasing requirements of high‐frequency communication are highly desired. Here, a cross‐linked porous polymer SiCOH, synthesized via simple sol–gel method, was used as the filler to prepare SiCOH/PI composite films by physically blending, which demonstrates ultralow dielectric constant at high frequency. Notably, only 2.5% of SiCOH in the composite can significantly reduce the dielectric constant of PI from 3.0 to an ultralow value of 1.7 in the 9.5–12.4 GHz, together with a low dielectric loss of 0.029. Additionally, the SiCOH/PI composite maintains a high tensile strength of 82.4 MPa and a tensile modulus of 1.82 GPa, which is comparable to pure PI film. While the glass transition temperature (Tg) increases to 370°C and the linear expansion coefficient is reduced to 30.7 ppm/°C, both of which are superior to those of pure PI film. Moreover, by introducing the hydrophobic SiCOH into PI, the contact angle of the composite films increased to 92.0°–99.0°. This simple and low‐cost method not only effectively lowers the dielectric constant of PI but also improves the thermal stability, mechanical properties, and hydrophobic ability, greatly boosts the practical application of PI in high‐frequency communication in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.