Abstract

This study proposes an optimal control scheme for a permanent-magnet linear synchronous generator (PMLSG) using the state feedback control (SFC) method plus the grey wolf optimisation (GWO) algorithm. First, A novel state-space model of linear PMLSG is established in order to obtain desired dynamics and enough power when used for the smooth wave energy. Second, the GWO algorithm is adopted to acquire weighting matrices Q and R in the process of optimising linear quadratic regulator (LQR). What is more, a penalty term is brought into the fitness index to reduce the overstrike of output voltage and keep the rate of work more stable. Finally, optimal LQR-based SFC with and without penalty term and proportional-integral (PI) controllers are compared both in simulations and in experiments. Results clearly prove that the proposed optimal control strategy performs a better response when compared to other strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.