Abstract
This paper investigates the use of wavelet ensemble models for high performance concrete (HPC) compressive strength forecasting. More specifically, we incorporate bagging and gradient boosting methods in building artificial neural networks (ANN) ensembles (bagged artificial neural networks (BANN) and gradient boosted artificial neural networks (GBANN)), first. Coefficient of determination (R2), mean absolute error (MAE) and the root mean squared error (RMSE) statics are used for performance evaluation of proposed predictive models. Empirical results show that ensemble models (R2BANN=0.9278, R2GBANN=0.9270) are superior to a conventional ANN model (R2ANN=0.9088). Then, we use the coupling of discrete wavelet transform (DWT) and ANN ensembles for enhancing the prediction accuracy. The study concludes that DWT is an effective tool for increasing the accuracy of the ANN ensembles (R2WBANN=0.9397, R2WGBANN=0.9528).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.