Abstract

In this study, an electrode wrapped in a carbon network is fabricated using a straightforward hydrothermal technique. Conducting polymers such as polyaniline (PANi) have been used to form carbon networks on the surfaces of carbon fibers. However, the cycling instability of PANi, which is a consequence of structural modifications, is a significant obstacle to its commercial application. This study presents an innovative and effective approach for synthesizing carbon networks using PANi/reduced graphene oxide (PANi-rGO-CF) composites to enhance the performance of vanadium redox flow battery (VRFB) electrodes. PANi-rGO was deposited on carbon felt using a hydrothermal method, followed by calcination under an argon atmosphere. The presence of graphene oxide facilitated the uniform distribution of PANi and enhanced its stability. PANi-rGO-CF demonstrated superior electrocatalysis toward vanadium redox couples owing to the abundant heteroatom active sites, affording VRFBs with extraordinary stability and outstanding energy efficiency after 100 cycles at 100 mA/cm2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.