Abstract

Trace chemical detection is important for a wide range of practical applications. Recently emerged two-dimensional (2D) crystals offer unique advantages as potential sensing materials with high sensitivity, owing to their very high surface-to-bulk atom ratios and semiconducting properties. Here, we report the first use of Schottky-contacted chemical vapor deposition grown monolayer MoS2 as high-performance room temperature chemical sensors. The Schottky-contacted MoS2 transistors show current changes by 2-3 orders of magnitude upon exposure to very low concentrations of NO2 and NH3. Specifically, the MoS2 sensors show clear detection of NO2 and NH3 down to 20 ppb and 1 ppm, respectively. We attribute the observed high sensitivity to both well-known charger transfer mechanism and, more importantly, the Schottky barrier modulation upon analyte molecule adsorption, the latter of which is made possible by the Schottky contacts in the transistors and is not reported previously for MoS2 sensors. This study shows the potential of 2D semiconductors as high-performance sensors and also benefits the fundamental studies of interfacial phenomena and interactions between chemical species and monolayer 2D semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.