Abstract

Alkali-activated ladle slag (AALS) is a promising cementitious material with environmental benefits. However, the brittleness of material has been limiting the use in construction. Therefore, in this experimental investigation, different polypropylene (PP) fibers were employed as a short randomly reinforcement in cementitious matrix in order to improve mechanical performance of the AALS composites.The study reveals that the AALS composite could gain very high ductility with an appropriate fibrous reinforcement. Fracture energy and fracture toughness of PP fiber reinforced AALS mortars increased by approximately 150 and 7.6 times, respectively, compared to the unreinforced material. Additionally, the flexural strength of the composite increased by roughly 300%. Pseudo strain hardening (PSH) behavior was observed along with multiple cracks under uniaxial tensile test. Scanning electron microscope (SEM) images confirmed the local fiber bridging effect, which resulted in the high mechanical performance of the PP-reinforced AALS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.