Abstract

The key issue of modern electrochemical technology is clean energy production and storage. Proton exchange membrane fuel cells (PEMFC) offer a way to produce electricity from hydrogen, but are hindered by the sluggish reduction of oxygen into water on the cathode, which requires Pt/C catalysts. Iron-nitrogen-carbon (Fe-N-C) catalysts have been shown in recent years to be viable alternatives. Here, we present highly performing Fe-N-C catalysts based on composite materials synthesised from carbide-derived carbon (CDC) and carbon nanotubes (CNT). B4C, Mo2C and TiC, which yield CDC materials with different porosity were chosen as the starting carbides, which are then doped with Fe, N and composited with CNTs using ball-milling and pyrolysis. 1,10-phenanthroline (Phen) and dicyandiamide (DCDA) serve as the nitrogen sources and Fe(II)acetate as the iron source. The catalyst derived from TiC shows a remarkable half-wave potential for oxygen reduction of 0.8 V vs RHE, which shifts negative 36 mV during 5000 potential cycles at 70 °C, while the composite material derived from it is more stable with a shift of only 15 mV during the same period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call