Abstract

Two-dimensional transition metal dichalcogenide (TMDC) heterostructure is receiving considerable attention due to its novel electronic, optoelectronic, and spintronic devices with design-oriented and functional features. However, direct design and synthesis of high-quality TMDC/MnTe heterostructures remain difficult, which severely impede further investigations of semiconductor/magnetic semiconductor devices. Herein, the synthesis of high-quality vertically stacked WS2/MnTe heterostructures is realized via a two-step chemical vapor deposition method. Raman, photoluminescence, and scanning transmission electron microscopy characterizations reveal the high-quality and atomically sharp interfaces of the WS2/MnTe heterostructure. WS2/MnTe-based van der Waals field effect transistors demonstrate high rectification behavior with rectification ratio up to 106, as well as a typical p-n electrical transport characteristic. Notably, the fabricated WS2/MnTe photodetector exhibits sensitive and broadband photoresponse ranging from UV to NIR with a maximum responsivity of 1.2 × 103 A/W, a high external quantum efficiency of 2.7 × 105%, and fast photoresponse time of ∼50 ms. Moreover, WS2/MnTe heterostructure photodetectors possess a broadband image sensing capability at room temperature, suggesting potential applications in next-generation high-performance and broadband image sensing photodetectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call