Abstract

Ultra-low refractive index thin films suitable for practical antireflective (AR) applications must be highly transparent, economical, and durable against temperature and weather conditions. In this work, we present a high performance broad band antireflective coating using a facile synthesis of Ink-Bottle mesoporous MgF2 nanoparticles. The nanoparticles having high crystalline and dispersible properties were prepared by a deformation-reformation route from coarse commercial MgF2 hydrate powder by Lyothermal synthesis. These nanoparticles, after dispersion in a suitable solvent were used to develop a single layer AR coating by dip-coating technique. We precisely developed coatings tunable to achieve minimum reflection losses between 400 and 1500nm. The AR coating exhibited nearly 100% transmittance within visible range (615–660nm) and an average transmittance of 99% and 97% in the visible (400–800nm) and active solar range (300–1500nm) respectively. Further, use of the AR coating on PV glass led to a net improvement of 6% in efficiency for c-Si solar cells. This work opens a promising approach to improve the device performance of solar cells as well as solar collectors by developing broad band antireflective surfaces using mesoporous nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.